
n 

, 
\ 

\ 

- 

I 

' I  

GPO PRICE $ 

CFSTI PRICE(S) $ 

' X-Sdl:68-'148 ' 

PRE PR I NT 

Hard copy (HC) 

Microfiche (MF) 

ff 653 July 65 i / , 

/ 

-PEAKING APPROXIMATIONS ' 

IN ATOMIC SCATTERING PROBLEMS 

t 

, 

H.LEE KYLE 
M. R. C. McDOWELL 

I 

I 

/ 

7 
1 

JULY 1968 i 

/' 

3 , 

' \  

h 



X-641-68-248 

PEAKING APPROXIMATIONS IN 

ATOMIC SCATTERING PROBLEMS 

H. Lee Kyle 

M. R. C. McDowell . 

July 1968 

NASA, GODDARD SPACE FLIGHT CENTER 

Greenbelt, Maryland 



14F;ECEDlNG PAGE BLANK NOT FILMED. 

. .  
4 

i .  

V 

PEAKING APPROXIMATIONS IN 

ATOMIC SCATTERING PROBLEMS 

H. Lee Kyle 

M. R. C. McDowell* 

ABSTRACT 

A particular peaking approximation used by Kang and Foland 

(1967) to evaluate a Coulomb Born matrix element is shown to badly 

misrepresent their total and differential c ross  sections for the 

IS - 2s transition in atomic hydrogen at low impact energies. 
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PEAKING APPROXIMATIONS IN 

ATOMIC SCATTERING PROBLEMS 

H. Lee Kyle 

M. R. C. McDowell 

NASA, Goddard Space Flight Center 

Greenbelt, Maryland 

In recent years  peaking approximations have been used to evaluate difficult 

integrals in several different models in atomic scattering theory. Vainshtein et 

al. (1963) used one in the Vainshtein approximation. All subsequent calculations 

in the Vainshtein approximation and its modifications (see e.g. Crothers 1967) in- 

clude a peaking approximation. Akerib and Borowitz (1961) and Coleman and 

McDowell (1966) used it in an impulse approximation calculation of direct ex- 

citation by proton impact and Kang and Foland (1967) used it to evaluate a Coulomb 

Born matrix element in their recent paper. 

In brief a peaking approximation implies the argument that if f ( x )  is a slowly 

varying function and F ( x )  is a function with dominant maximum at x = x o  then 

Clearly this is a 

descents (Morse 

J f ( x ) F ( x )  dx 2 f ( x o ) J F ( x )  dx . 

simple version of the method of stationary phase or of steepest 

and Feshbach 1953) but omitting any pretense of mathematical 
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rigor. U s e  of such an argument will  be referred to  below as a peaking 

approximation. 

Although this approach has proved useful in calculating radiation induced 

transition probabilities in atoms, see for  instance Schiff (1955), its validity in 

connection with most atomic scattering problems is doubtful. The above mentioned 

authors applied it to complicated integrands whose exact behavior is difficult to  

analyze. It is necessary to consider each case individually and until the total 

integrand is exactly evaluated it is impossible to  know if the peaking approxima- 

tion is useful in that particular case,  

The Vainshtein cases are being investigated by one of u s  (H.L.K.) but con- 

clusive results have not yet been obtained. Coleman (1968) demonstrates that, 

for proton impact excitation of atomic hydrogen in the impulse approximation, 

the peaking approximation gives total c ros s  sections which may be as  much as 

a factor of 10  in e r ro r .  In this note we show that in Kang and Foland's theory the 

peaking approximation badly misrepresents the t r u e  behavior of the 1 s  -+ 2s ex- 

citation matrix element for atomic hydrogen. 

Kang and Foland (1967) introduced a new scheme for calculating c ross  

sections for the excitation and ionization of a toms and ions by electrons, which 

is essentially an extension of the Coulomb-Born approximation. We do not here  

wish to  discuss at length the validity or  usefulness of this scheme, but we do 

wish to touch on one point. In dealing with the excitation of neutral hydrogen by 

electrons they represent the incident and scattered electrons by Coulomb waves. 
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These waves do not (asymptotically) properly repre  sent the physical situation. 

Using these Coulomb Born matrix elements they predict finite excitation prob- 

abilities at threshold. The fact is that Coulomb Born matrix elements between 

hydrogenic bound states automatically yield finite excitation c ros s  sections at 

threshold. However one must physically justify the use of such matrix elements 

in the case of neutral atoms. It should be noted that Damburg and Gaili t is  (1963) 

showed that atomic hydrogen excitation c ros s  sections arising from electron 

impacts are finite at threshold because of coupling effects between degenerate 

quantum states, and not because the  scattered electron wave function is Coulombic. 

Our chief concern however is with the peaking approximation used by Kang 

and Foland in evaluating the non-exchange te rm of their excitation matrix element 

T i ,  f ,  where 

Here k, andk,  are the wave vectors of the incident and scattered, a, electron; 

+b ( i ) and +b ( f ) are the hydrogenic eigen states of the bound, b, electron, and 

'ab - l/rab is the interaction potential. The "in" and "out" state, attractive 

Coulomb wave functions of the incident electron are 

- 
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with 

\Nil2 = 2n I[ k i  (1 -e -2n /k i ) ]  . 

Kang and Foland show that the direct (non-exchange) excitation amplitude in 

their theory may be put in the form 

where C(k) is the generalized oscillator strength, and F(k i ,  1) is one cf the 

confluent hypergeometric functions given in (3), and - q = k, - k, . Since the in- 

tegral with respect to  -L, increases without limit ask --. q , they argue that (4) 

may be replaced by 

- 

This can be put in the form of a Nordseick integral (Nordseick 1954) 
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with 

a P = k1-2 

and is their version of the peaking approximation to the matrix element, though 

they have used a standard transformation to write the hypergeometric function 

in (6) in  an alternative form. Alternative peaking approximations, which differ 

appreciably from (6) may be derived by noting that the slowly varying factor is 

k - 2  G(k) rather than simply C(k), for  example. 

Gailitis (1966) has  shown that for s - s transitions (4) may be evaluated 

without approximation, in closed form. We obtain for the Is -4 2s function 

with Z being the nuclear charge, and p, = 32/2ao, and a, is the Bohr radius. 

We have evaluated the non-exchange contribution to the 1s  - 2s differential 

c ros s  section in the Kang-Foland model using both (6) and (7). The results for 

the differential c ross  section I (0)  a r e  shown in Fig. 1, the first Born results 

being given for comparison; (though it is of doubtful value in this energy range.) 

The results are shown as a function of scattering angle 0 = c0s-l (go * E,) at 

energies W = 1-01 and W = 2.0 threshold units (W = 1.0 = 0.75 Ry), Near 

threshold the Kang-Foland method differs markedly from the first Born approxi- 

mation, giving values of I( 0 ) an order  of magnitude larger  in the backward di- 
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rection. The effect of the peaking approximation is to underestimate by more 

than a factor of 10 at B = 0, but t o  overestimate by 20% in the backward direction. 

At W = 2 the peaking approximation introduces a spurious maximum in I( 0) at 

40°, and is generally in e r r o r  by factors of two or  three for B < 90". 

In Table 1 we compare total 1s -' 2s excitation c ros s  sections obtained from 

(6) and (7) with the 1 s  - 2s - 2p close coupling results [Damburg and Gailitis 

(1963), Omidvar (1964), Burke et al. (1967)l. The Kang-Foland model gives 

results which a r e  approximately a factor of three higher near threshold (W < 1.15) 

than the 3-state close coupling results, while the peaking approximation intro- 

duces an additional e r r o r  of about a factor of two. At higher energies (W >> 10) 

both (6) and (7) give total cross-sections in close agreement with the first Born 

approximation. 

We conclude that use of a peaking approximation in the evaluation of matrix 

elements involving Coulomb functions is not in general justified, and may lead to  

order of magnitude e r rors .  All results reported to date in the Vainshtein ap- 

proximation should be treated with suspicion until a detailed analysis of the 

effect of the peaking approximation in that model has  been carr ied out. 
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TABLE CAPTION 

Table I. ( 1 s  -, 2 s )  excitation c ross  sections for atomic hydrogen in units of 

(na:). The 3-state close coupling results (c.c.) are from (a) Damburg 

and Gailitis (1963) and (b) Burke, Ormonde and Witaker (1967). The 

Coulomb Born results compare the exact solution of Eq. (7) with its 

approximate solution, Eq. (6), obtained by use of the peaking approxi- 

mation (P.A.). The close coupling calculations of course take account 

of exchange but the other calculations do not. 
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FIGURE CAPTION 

Fig. 1 The effect of the peaking approximation on the differential c ross  section 

I ( B )  for the 1 s  4 2s transition in atomic hydrogen. Energy is given in 

t e rms  of threshold units (W = 1.0 = 0.75 Ry), (a) W = 1.01, @) W 

= 2.0. The ciirves me 1-first Born approximation; 2-Couiomb-Born, 

Eq. (7); 3-peaking approximation to the Coulomb-Born, Eq. (6). 
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Table I 

w = k,2/Iex C.C. 

Coulomb Born 

Exact P. A. 

1.01 

1.50 

2 .oo 

0.1 74(a) 

0.36 (b) 

(b) 0.25 

0.5 73 

.396 

.301 

1.13 

* .82 

.62 
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